開關(guān)模式電源電流檢測(cè)——第二部分:何處放置檢測(cè)電阻
2021/2/25 13:29:06??????點(diǎn)擊:
電流檢測(cè)電阻的位置連同開關(guān)穩(wěn)壓器架構(gòu)決定了要檢測(cè)的電流。檢測(cè)的電流包括峰值電感電流、谷值電感電流(連續(xù)導(dǎo)通模式下電感電流的最小值)和平均輸出電流。檢測(cè)電阻的位置會(huì)影響功率損耗、噪聲計(jì)算以及檢測(cè)電阻監(jiān)控電路看到的共模電壓。
對(duì)于降壓調(diào)節(jié)器,電流檢測(cè)電阻有多個(gè)位置可以放置。當(dāng)放置在頂部MOSFET的高端時(shí)(如圖1所示),它會(huì)在頂部MOSFET導(dǎo)通時(shí)檢測(cè)峰值電感電流,從而可用于峰值電流模式控制電源。但是,當(dāng)頂部MOSFET關(guān)斷且底部MOSFET導(dǎo)通時(shí),它不測(cè)量電感電流。
在這種配置中,電流檢測(cè)可能有很高的噪聲,原因是頂部MOSFET的導(dǎo)通邊沿具有很強(qiáng)的開關(guān)電壓振蕩。為使這種影響最小,需要一個(gè)較長(zhǎng)的電流比較器消隱時(shí)間(比較器忽略輸入的時(shí)間)。這會(huì)限制最小開關(guān)導(dǎo)通時(shí)間,并且可能限制最小占空比(占空比 = VOUT/VIN)和最大轉(zhuǎn)換器降壓比。注意在高端配置中,電流信號(hào)可能位于非常大的共模電壓(VIN)之上。
圖2中,檢測(cè)電阻位于底部MOSFET下方。在這種配置中,它檢測(cè)谷值模式電流。為了進(jìn)一步降低功率損耗并節(jié)省元件成本,底部FET RDS(ON)可用來(lái)檢測(cè)電流,而不必使用外部電流檢測(cè)電阻RSENSE。
圖3中,電流檢測(cè)電阻RSENSE與電感串聯(lián),因此可以檢測(cè)連續(xù)電感電流,此電流可用于監(jiān)測(cè)平均電流以及峰值或谷值電流。所以,此配置支持峰值、谷值或平均電流模式控制。
對(duì)于升壓調(diào)節(jié)器,檢測(cè)電阻可以與電感串聯(lián),以提供高端檢測(cè)(圖4)。
檢測(cè)電阻也可以放在底部MOSFET的低端,如圖5所示。此處監(jiān)測(cè)峰值開關(guān)電流(也是峰值電感電流),每半個(gè)周期產(chǎn)生一個(gè)電流波形。MOSFET開關(guān)切換導(dǎo)致電流信號(hào)具有很強(qiáng)的開關(guān)噪聲。
圖6顯示了一個(gè)4開關(guān)升降壓轉(zhuǎn)換器,其檢測(cè)電阻位于低端。當(dāng)輸入電壓遠(yuǎn)高于輸出電壓時(shí),轉(zhuǎn)換器工作在降壓模式;當(dāng)輸入電壓遠(yuǎn)低于輸出電壓時(shí),轉(zhuǎn)換器工作在升壓模式。在此電路中,檢測(cè)電阻位于4開關(guān)H橋配置的底部。器件的模式(降壓模式或升壓模式)決定了監(jiān)測(cè)的電流。
在升壓模式下(開關(guān)A一直導(dǎo)通,開關(guān)B一直關(guān)斷),檢測(cè)電阻與底部MOSFET (C)串聯(lián),并在電感電流上升時(shí)測(cè)量峰值電流。在這種模式下,由于不監(jiān)測(cè)谷值電感電流,因此當(dāng)電源處于輕負(fù)載狀態(tài)時(shí),很難檢測(cè)負(fù)電感電流。負(fù)電感電流意味著電能從輸出端傳回輸入端,但由于這種傳輸會(huì)有損耗,故效率會(huì)受損。對(duì)于電池供電系統(tǒng)等應(yīng)用,輕負(fù)載效率很重要,這種電流檢測(cè)方法不合需要。
圖7電路解決了這個(gè)問(wèn)題,其將檢測(cè)電阻與電感串聯(lián),從而在降壓和升壓模式下均能連續(xù)測(cè)量電感電流信號(hào)。由于電流檢測(cè)RSENSE連接到具有高開關(guān)噪聲的SW1節(jié)點(diǎn),因此需要精心設(shè)計(jì)控制器IC,使內(nèi)部電流比較器有足夠長(zhǎng)的消隱時(shí)間。
輸入端也可以添加額外的檢測(cè)電阻,以實(shí)現(xiàn)輸入限流;或者添加在輸出端(如下圖所示),用于電池充電或驅(qū)動(dòng)LED等恒定輸出電流應(yīng)用。這種情況下需要平均輸入或輸出電流信號(hào),因此可在電流檢測(cè)路徑中增加一個(gè)強(qiáng)RC濾波器,以減少電流檢測(cè)噪聲。
上述大多數(shù)例子假定電流檢測(cè)元件為檢測(cè)電阻。但這不是強(qiáng)制要求,而且實(shí)際上往往并非如此。其他檢測(cè)技術(shù)包括使用MOSFET上的壓降或電感的直流電阻(DCR)。
放置在降壓調(diào)節(jié)器高端
對(duì)于降壓調(diào)節(jié)器,電流檢測(cè)電阻有多個(gè)位置可以放置。當(dāng)放置在頂部MOSFET的高端時(shí)(如圖1所示),它會(huì)在頂部MOSFET導(dǎo)通時(shí)檢測(cè)峰值電感電流,從而可用于峰值電流模式控制電源。但是,當(dāng)頂部MOSFET關(guān)斷且底部MOSFET導(dǎo)通時(shí),它不測(cè)量電感電流。
圖1.帶高端RSENSE的降壓轉(zhuǎn)換器
在這種配置中,電流檢測(cè)可能有很高的噪聲,原因是頂部MOSFET的導(dǎo)通邊沿具有很強(qiáng)的開關(guān)電壓振蕩。為使這種影響最小,需要一個(gè)較長(zhǎng)的電流比較器消隱時(shí)間(比較器忽略輸入的時(shí)間)。這會(huì)限制最小開關(guān)導(dǎo)通時(shí)間,并且可能限制最小占空比(占空比 = VOUT/VIN)和最大轉(zhuǎn)換器降壓比。注意在高端配置中,電流信號(hào)可能位于非常大的共模電壓(VIN)之上。
放置在降壓調(diào)節(jié)器低端
圖2中,檢測(cè)電阻位于底部MOSFET下方。在這種配置中,它檢測(cè)谷值模式電流。為了進(jìn)一步降低功率損耗并節(jié)省元件成本,底部FET RDS(ON)可用來(lái)檢測(cè)電流,而不必使用外部電流檢測(cè)電阻RSENSE。
圖2.帶低端RSENSE的降壓轉(zhuǎn)換器
這種配置通常用于谷值模式控制的電源。它對(duì)噪聲可能也很敏感,但在這種情況下,它在占空比較大時(shí)很敏感。谷值模式控制的降壓轉(zhuǎn)換器支持高降壓比,但由于其開關(guān)導(dǎo)通時(shí)間是固定/受控的,故最大占空比有限。降壓調(diào)節(jié)器與電感串聯(lián)
圖3中,電流檢測(cè)電阻RSENSE與電感串聯(lián),因此可以檢測(cè)連續(xù)電感電流,此電流可用于監(jiān)測(cè)平均電流以及峰值或谷值電流。所以,此配置支持峰值、谷值或平均電流模式控制。
圖3.RSENSE與電感串聯(lián)
這種檢測(cè)方法可提供最佳的信噪比性能。外部RSENSE通??商峁┓浅?zhǔn)確的電流檢測(cè)信號(hào),以實(shí)現(xiàn)精確的限流和均流。但是,RSENSE也會(huì)引起額外的功率損耗和元件成本。為了減少功率損耗和成本,可以利用電感線圈直流電阻(DCR)檢測(cè)電流,而不使用外部RSENSE。放置在升壓和反相調(diào)節(jié)器的高端
對(duì)于升壓調(diào)節(jié)器,檢測(cè)電阻可以與電感串聯(lián),以提供高端檢測(cè)(圖4)。
圖4.帶高端RSENSE的升壓轉(zhuǎn)換器
升壓轉(zhuǎn)換器具有連續(xù)輸入電流,因此會(huì)產(chǎn)生三角波形并持續(xù)監(jiān)測(cè)電流。放置在升壓和反相調(diào)節(jié)器的低端
檢測(cè)電阻也可以放在底部MOSFET的低端,如圖5所示。此處監(jiān)測(cè)峰值開關(guān)電流(也是峰值電感電流),每半個(gè)周期產(chǎn)生一個(gè)電流波形。MOSFET開關(guān)切換導(dǎo)致電流信號(hào)具有很強(qiáng)的開關(guān)噪聲。
圖5.帶低端RSENSE的升壓轉(zhuǎn)換器
SENSE電阻放置在升降壓轉(zhuǎn)換器低端或與電感串聯(lián)
圖6顯示了一個(gè)4開關(guān)升降壓轉(zhuǎn)換器,其檢測(cè)電阻位于低端。當(dāng)輸入電壓遠(yuǎn)高于輸出電壓時(shí),轉(zhuǎn)換器工作在降壓模式;當(dāng)輸入電壓遠(yuǎn)低于輸出電壓時(shí),轉(zhuǎn)換器工作在升壓模式。在此電路中,檢測(cè)電阻位于4開關(guān)H橋配置的底部。器件的模式(降壓模式或升壓模式)決定了監(jiān)測(cè)的電流。
圖6.RSENSE位于低端的升降壓轉(zhuǎn)換器
在降壓模式下(開關(guān)D一直導(dǎo)通,開關(guān)C一直關(guān)斷),檢測(cè)電阻監(jiān)測(cè)底部開關(guān)B電流,電源用作谷值電流模式降壓轉(zhuǎn)換器。在升壓模式下(開關(guān)A一直導(dǎo)通,開關(guān)B一直關(guān)斷),檢測(cè)電阻與底部MOSFET (C)串聯(lián),并在電感電流上升時(shí)測(cè)量峰值電流。在這種模式下,由于不監(jiān)測(cè)谷值電感電流,因此當(dāng)電源處于輕負(fù)載狀態(tài)時(shí),很難檢測(cè)負(fù)電感電流。負(fù)電感電流意味著電能從輸出端傳回輸入端,但由于這種傳輸會(huì)有損耗,故效率會(huì)受損。對(duì)于電池供電系統(tǒng)等應(yīng)用,輕負(fù)載效率很重要,這種電流檢測(cè)方法不合需要。
圖7電路解決了這個(gè)問(wèn)題,其將檢測(cè)電阻與電感串聯(lián),從而在降壓和升壓模式下均能連續(xù)測(cè)量電感電流信號(hào)。由于電流檢測(cè)RSENSE連接到具有高開關(guān)噪聲的SW1節(jié)點(diǎn),因此需要精心設(shè)計(jì)控制器IC,使內(nèi)部電流比較器有足夠長(zhǎng)的消隱時(shí)間。
圖7.LT8390升降壓轉(zhuǎn)換器,RSENSE與電感串聯(lián)
輸入端也可以添加額外的檢測(cè)電阻,以實(shí)現(xiàn)輸入限流;或者添加在輸出端(如下圖所示),用于電池充電或驅(qū)動(dòng)LED等恒定輸出電流應(yīng)用。這種情況下需要平均輸入或輸出電流信號(hào),因此可在電流檢測(cè)路徑中增加一個(gè)強(qiáng)RC濾波器,以減少電流檢測(cè)噪聲。
上述大多數(shù)例子假定電流檢測(cè)元件為檢測(cè)電阻。但這不是強(qiáng)制要求,而且實(shí)際上往往并非如此。其他檢測(cè)技術(shù)包括使用MOSFET上的壓降或電感的直流電阻(DCR)。
- 上一篇:工業(yè)智能照明未來(lái)應(yīng)用及發(fā)展趨勢(shì) 2021/2/25
- 下一篇:鋰電池太陽(yáng)能路燈,輕巧穩(wěn)定又耐用 2021/2/5